ABBREVIATIONS

LINE DESIGNATIONS

Ø	DIAMETER OR PHASE
°F	DEGREES FAHRENHEIT
ABV	ABOVE
ACCU	AIR COOLED CONDENSING UNIT
	ACCESS DOOR
ΔFF	ABOVE FINISHED FLOOR
	AIR FLOW MEASURING DEVICE
AHU	
ВНР	BRAKE HURSEPOWER
BOD	BOITOM OF DUCT
BIU	BRITISH THERMAL UNIT
BIUH	BRIIISH THERMAL UNIT/HR
С	CONVERIOR
CC	COOLING COIL
CENTRIF	CENTRIFUGAL
CFM	CUBIC FEET PER MINUTE
СН	CABINET HEATER
CHR	CHILLED WATER RETURN
CHWS	CHILLED WATER SUPPLY
СОМР	COMPRESSOR
CONV	CONVECTOR
DB	DRY BULB
DIA	DIAMETER
DN	DOWN
DP	DEW POINT
E/A	EXHAUST AIR
EAT	ENTERING AIR TEMP
(F)	FXISTING
(_) F C	
FFR	ENERGY EFFICIENCY RATIO
FF	EXHAUST FAN
EC.	
FSP	EXTERNAL STATIC PRESSURE
FT	EXPANSION TANK
E1	
	ENTERING WATER TEMPERATURE
EW1	EFET DER MINITE
FT	
FTR	ΓΙΝ ΤΗΒΕ ΒΑΓΙΑΤΙΩΝ
C C	
СРМ	CALLONS PER MINUTE
GF M	HEATING COU
нр	
	HOT WATER HEATING RETURN
	HOT WATER HEATING SUPPLY
INI	NOT WATER HEATING SUFFET
IIN	
	LEAVING AIR TEMPERATURE
	LOW WATEN OUT OFF
L VV I	LLAVING WALER LEMPERATURE
M C	
WI.U	
ועותהר (או)	WANDAL RESEL TIGT LIMII
(IN) NUO	
NIC	NOT IN CONTRACT
0/A	OUIDOOR AIR
Ρ	PUMP
PD	PRESSURE DROP
РН	PHASE
RF	RETURN FAN
RG	RETURN GRILLE
RPM	REVOLUTIONS PER MINUTE
SD	SUPPLY DIFFUSER
SF	SUPPLY FAN
SST	STAINLESS STEEL
TEMP	TEMPERATURE
TSP	TOTAL STATIC PRESSURE
VAV	VARIABLE AIR VOLUME
VD	VOLUME DAMPER
VFD	VARIABLE FREQUENCY DRIVE
VSMC	VARIABLE SPEED MOTOR CONTROLLER
VTR	VENT THROUGH ROOF
WB	WET BULB

 СН		
 CHR		
 CS		
 CR		
 HWH		
 HWHR		
 MU		
 V		
Ą		
 \sim		
4		
 A		
, ∙ i		
 ЧΩР		
_		
 -174-		
\sim		
 ->•>-		
F		
 ΗΦΗ		
 -		
\square		
 -124-		
 A		
\bigcirc		
PT		
(01)		
	<	
W-4 H-11/-		
	≺	
∖Ⅲ/◄		

CHILLED WATER SUPPLY CHILLED WATER RETURN CONDENSER WATER SUPPLY CONDENSER WATER RETURN HOT WATER HEATING SUPPLY HOT WATER HEATING RETURN MAKE-UP WATER VENT	
AUTOMATIC AIR VENT	
ANCHOR	
STRAINER	
STRAINER W/BLOW OFF	
SWING CHECK VALVE	
FULL PORT BALL VALVE	
BUTTERFLY VALVE	
GATE VALVE	
GLOBE VALVE	
PLUG VALVE (GAS)	
BALANCING VALVE	
CIRCUIT SETTER	
TWO WAY CONTROL VALVE	
THREE WAY CONTROL VALVE	
THERMOSTAT	
PRESSURE TRANSMITTER	
– SECTION – DRAWING TAKEN / DRAWING	S

EQUIPMENT TAG DESIGNATION

UNIT VENTILATOR SCHEDULE

						COC	DLING COIL		HEATIN	G COIL		
SYMBOL	FAN WATTS	CFM	O.A. CFM	COIL	TOTAL MBH	SENS. MBH	FLOW RATE, GPM	WPD (FT. H2O)	TOTAL MBH		VOLTS/ PHASE	TRANE MODEL NO.
UV-1	37	200	VARIES	2CH	5.38	3.91	1.10	6.79	14.6		115V/1ø	FCJB0201EEH?GA
UV-2	39	260	VARIES	2CH	6.20	4.61	1.20	8.65	17.4		115V/1ø	FCJB0301EEH?GA
UV-3	58	330	VARIES	2CH	7.82	6.17	1.60	3.08	21.7		115V/1ø	FCJB0401EEH?GA
UV-4	79	500	VARIES	2CH	13.57	10.06	2.8	10.01	34.08		115V/1ø	FCJB0601EEH?GA
UV-5	37	200	N/A	2CH	5.38	3.91	1.10	6.79	14.6		115V/1ø	FCDB0201

NOTES:

1. SELECTION OF FAN COILS BASED ON TRANE.

2. THE CONTRACTOR SHALL FURNISH EACH FAN COIL WITH 1" THROWAWAY MERV 13 FILTERS, AND (2) EXTRA FILTERS.

3. EACH FAN COIL WITH AN OUTSIDE AIR INLET SHALL HAVE A FREEZESTAT INSTALLED ON THE

COIL WHICH WILL ACTIVATE THE UNIT FAN WHEN THE TEMPERATURE REACHES 35° F. 4. EACH FAN COIL INSTALLED ON AN OUTSIDE WALL SHALL HAVE AN OUTSIDE AIR INLET, RECTANGULAR WALL BOX WITH O.A. DUCT, GRILLE ON THE EXTERIOR OF THE WALL, AND A TWO POSITION, AUTOMATIC AIR DAMPER. THE DAMPER SHALL AUTOMATICALLY MODULATE TO THE OPEN POSITION WHEN THE FAN COIL IS ACTIVATED, EXCEPT WHEN THE OUTDOOR TEMPERATURE IS AT OR BELOW 32" F. 5. FAN COILS ON EXTERIOR WALLS SHALL BE FURNISHED WITH A SST CONDENSATE PAN, AND

SHALL HAVE A $\frac{3}{4}$ " PVC DRAIN TO THE EXTERIOR.

6. UV-6 IS AN HORIZONTAL CABINET UNIT FOR THE KITCHEN. FURNISH & INSTALL ALL PIPING AND ELECTRICAL, AS WELL AS A 1"0 CONDENSATE DRAIN FROM THE PAN TO THE EXTERIOR WALL. THE UNIT SHALL HAVE A FRONT OUTLET BAR GRILLE AND BOTTOM INLET LOUVERS. 7. MULTIPLE FAN COILS IN A ROOM SHALL BE CONTROLLED FROM THE (1) ROOM THERMOSTAT.

EXHAUST FAN SCHEDULE TAG TYPE ELECTRICAL HP CFM SP SONES LOCATION NOTES EF-1 ROOF EXHAUSTER 115V/10/60Hz 1/6 100 0.187" 8.6 JANITOR'S CLOSET ALL NOTES 12.3 LADIES ROOM EF-2 ROOF EXHAUSTER 115V/1ø/60Hz 1/8 250 0.25" ALL NOTES ALL NOTES EF-3 ROOF EXHAUSTER 115V/1ø/60Hz 1/4 550 0.25" 8.5 MENS ROOM

NOTE:

1. M.C. SHALL FURNISH CURB; G.C. SHALL INSTALL & FLASH ROOF.

POWER WIRING BY THE E.C., CONTROL WIRING BY THE M.C. 2. M.C SHALL FURNISH & INSTALL GRAVITY DAMPERS WITH ALL FANS.

BASEBOARD RADIATION SCHEDULE

TAG	<u>BTUH</u> LF	7T	TUI DI	BE A.	LENGTH	TOTAL BTUH	NOTES:
BB-2	700	20°	3/	′4	2 FT.	1400	NOTES 1, 2, 3, 4, 5, 6, 7
BB-3					3 FT.	2100	NOTES 1, 2, 3, 4, 5, 6, 7
BB-4					4 FT.	2800	NOTES 1, 2, 3, 4, 5, 6, 7
BB-5					5 FT.	3500	NOTES 1, 2, 3, 4, 5, 6, 7
BB-6					6 FT.	4200	NOTES 1, 2, 3, 4, 5, 6, 7
BB-7					7 FT.	4900	NOTES 1, 2, 3, 4, 5, 6, 7
BB-8					8 FT.	5600	NOTES 1, 2, 3, 4, 5, 6, 7
BB-9					9 FT.	6300	NOTES 1, 2, 3, 4, 5, 6, 7
BB-10	*	¥		1	10 FT.	7000	NOTES 1, 2, 3, 4, 5, 6, 7

NOTES: 1. TUBE DIAMETER=3/4", $\triangle T = 20^{\circ}$, FLOW=1 GPM. 2. BASED ON STERLING MODEL LB-2. BASEBOARD FIN TUBE RADIATION. . MOUNTING HEIGHT AT 10 3/4 AFF.

4. FURNISH AND INSTALL WITH FULL BACKPLATE, MODULATING DAMPER ASSEMBLY WITH KNOB ACTUATOR. 5. FURNISH AND INSTALL WALL TO WALL ENCLOSURES, INCLUDING END CAPS AND WALL SLEEVES. 6. BASEBOARD RATING BASED ON 180° EWT, 65° EAT AND 700 BTU/LF. 7. BASEBOARD ENCLOSURE COLOR TO BE SELECTED BY ARCHITECT.

		EVA	<u>APOR</u>	ATOR	СН	ILLE	IR S	SCHE	EDULE
TAG	NOM TONS	REFRIG. CIRCUITS	SUCTION LINE DIA.	LIQUID LINE DIA.	H₂O ∆P	GPM	EWT	LWT	REMARKS
EV-1	30	1	2-1/8"	7/8"	4.26	47.42	58°	44°	
SELECT	TON IS B	ASED ON	I A TRANE	BRAZED	PLATE				

HEAT EXCHANGER.

	_	EXPAN	ISION	TANK S	CHEE	DULE
TAG	TANK VOL.(GAL)	MAX ACCEP.GAL	SIZE	SERVICE	TYPE	ΝΟΤΕՏ
EX-1	44.4	22.6	24"ø 29" H	HOT WATER HYDRONIC SYSTEM		AMTROL AX-80V OR EQUAL
EX-2	8.0	2.4	12"ø 22" H	CHILLED WATER HYDRONIC SYSTEM		AMTROL AX-15 OR EQUAL
EXPAN	SION TANK	S SHALL BE	ASME MOD	ELS		

NFW R

					DUILLIN	SCHEDU.		
TAG	TYPE	BURNER	BURNER CAPACITY (BTU/HR.)	GROSS IBR OUTPUT (BTU/HR.)	NET AHRI OUTPUT HOT WATER (BTU/HR.)	BOILER H.P.	FUEL	NOTES:
B-1	HOT WATER	FORCED DRAFT	639,000	515,000	455,000	15.4	NATURAL GAS	BASIS OF DESIGN IS WEIL-MCLAIN 580 WATER BOILER OR APPROVED EQUAL FURNISH & INSTALL COMPLETE BOILER PACKAGE
B-2	HOT WATER	FORCED DRAFT	639,000	515,000	455,000	15.4	NATURAL GAS	BASIS OF DESIGN IS WEIL–MCLAIN 580 WATER BOILER OR APPROVED EQUAL FURNISH & INSTALL COMPLETE BOILER PACKAGE

<u>NOTES:</u> 1. ASME CERTIFIED FACTORY TESTED, FULLY ASSEMBLED, PACKAGED CAST IRON WITH ALL NECESSARY BOILER CONTROLS. . FACTORY ASSEMBLED SECTIONS.

FIRE-TESTED PACKAGE BOILER (INCLUDES LOW-WATER CUT-OFF).
BURNER MOUNTING PLATE FOR "H" UNITS.

5. FURNISH & INSTALL BOILER MANUFACTURER'S CONTROL PANEL TO CONTROL BOILER AND PUMPS. INTERFACE BOILER CONTROL PANEL WITH BUILDING CONTROL CENTER.

6. BURNER BASED ON POWER-FLAME MODEL WCR1. FURNISHED & INSTALLED BY M.C.

							F		
						JUL	<u> </u>		
TAG	MFGR./MODEL NO	. GPM	HEAD (ft.)	TYPE	ΗP	RPM	VOLTS/PHASE	USE	REMARKS
P-1	B&G/TACO	45	20 Ft	BASE MOUNTED	2.0	1750	230/3ø/60	HEATING/COOLING CIRCUIT	
P-1A	B&G/TACO	45	20 Ft	BASE	2.0	1750	230/3ø/60	HEATING/COOLING CIRCUIT	
P-2	B&G/TACO	6	5 Ft	IN LINE	1/6	1750	115/1ø/60	BASEMENT BASEBOARD CIRC	UIT
P-2A	B&G/TACO	6	5 Ft	IN LINE	1/6	1750	115/1ø/60	BASEMENT BASEBOARD CIRC	UIT
P-3	B&G/TACO	25	5 Ft	LINE	1/6	1750	115/1ø/60	BOILER CIRC.	
P-3A	B&G/TACO	25	5 Ft	IN LINE	1/6	1750	115/1ø/60	BOILER CIRC.	
NOTES	:								

1. FURNISH & INSTALL AUTOMATIC AIR VENTS AT ALL HIGH POINTS IN HYDRONIC PIPING.

2. ALL IN-LINE CIRCULATORS SHALL BE EQUIPPED WITH SHUTOFF VALVES (SEE P-2).

NO SCALE

HORIZONTAL UNIT

	GRILL	E ,]	REC	JIST	ER, AN	D DI	FFUSE	R SCHEDULE
TAG	CFM RANGE	SP	NECK SIZE	MAX. NC	MODULE SIZE	SERVICE	MATERIAL	REMARKS
ER-1	100	<0.01	12x12	<20	12x12	EXHAUST	STEEL	
ER-2	250	<0.01	16x16	<20	16x16	EXHAUST	STEEL	
ER-3	550	<0.01	20x20	<20	20x20	EXHAUST	STEEL	
NOTES:								
1. Selections I	BASED ON ANEMOSTA	T.						

2. THE M.C. MUST COORDINATE THE TYPE OF MOUNTING FOR THE REGISTERS WITH THE ASSOCIATED CEILINGS, I.E., METAL PANEL, CONCRETE PLANK OR ACOUSTICAL TILE CEILINGS.

							<u> </u>	ONE	DENSI	NG UN		SC	HE	DUL	E									
Τ.	COMPRESSO	R DATA			ELECTRICAL	DATA						CON	IDEN	SER F	FAN DA	ATA				CC	ONDEN	ISER CC	DATA	
21. 1P.	TYPE	CIRCUITS	# STEPS	% STEPS	VOLTS/Ø	MIN CIRC. AMPTY	MAX FUSE	COMP RLA	TOT. COMP KW	TOT. COND MBH	LRA	QTY	DIA	TYPE	DRIVE	# MOTORS	ΗP	TOT. KW	TOT. CFM	NO.	SIZE	FACE AREA	ROWS FPF	NOTES
۰F	SCROLL	30 TON	2	100-50	230/3ø	123	150	48.8	31.18	115.65	351	3	26	PROP	DIRECT	3	1.0	2.71	20700	2	42x71	41.4 FT	1 240	TRANE MODEL RAUJ-30
																								RAUJ-C30-EP_13ABDF0JC1

1. INCLUDE LOW AMBIENT CONTROL OPTION. 2. INCLUDE POWERED CONVENIENCE OUTLET AND NON-FUSED DISCONNECT SWITCH.

OILER SCHEDULE

DECISTED		
, REUISIER,	AND DIFFUSE	K SUNEDULE

Guide Specification: FAN COIL [QTY: 10]

1.1 APPLICATION-SPECIFIC CONTROLLERS

A. General Description

1. Application Specific Controllers (ASC) shall be microprocessor-based DDC controllers which, through hardware or firmware design, control specified equipment. They are not user programmable, but are customized for operation within the confines of the equipment they are designed to serve.

2. Zone Controllers are controllers that operate equipment that control the space temperature of single zone. Examples are controllers for VAV, Fan coil, Blower Coils, Unit Ventilators, Heat Pumps, and Water Source Heat Pumps.

B. The Application Specific Controller shall be capable of operating as a stand-alone controller or as a member of a Building Automation System (BAS).

C. When the Application Specific Controller is operating as a member of a Building Automation System (BAS), the application controller shall operate as follows:

1. Application Controller will receive operation mode commands from the BAS network controller. The BAS commands shall include but not be limited to the follow: Occupied Heat/Cool, Unoccupied Heat/Cool, Morning Warm-up, / Pre-cool, Occupied Bypass).

2. Application Controller will provide equipment status parameters to the BAS through BACnet communication. 3. Application Controller will operate as a stand-alone controller in the event of communication failure with the

4. In case of communications failure stand-alone operation shall use default values or last known values for remote sensors read over the network such as outdoor air temperature.

D. Stand-Alone Operation: Each piece of equipment specified in section "A" shall be controlled by a single controller and provide stand-alone control in the event that a BAS is not present.

E. Software

BAS.

1. To meet the sequence of operation for each zone control, the controller shall use programs developed and tested by the controller manufacturer that are either factory loaded or downloaded with service tool to the controller.

2. For controlling ancillary devices and for flexibility to change the sequence of operation in the future, the controller shall be capable running custom programs written in a graphical programming language.

- F. Environment: Controller hardware shall be suitable for the anticipated ambient conditions.
- 1. Storage: -55° to 203° F (-48° to 95° C) and 5 to 95% Rh, non-condensing.
- 2. Operating: -40° to 158° F (-40 to 70° C) and 5 to 95% Rh, non-condensing.

3. Controllers used indoors shall be mounted in a NEMA 1 enclosure at a minimum.

4. Controllers used outdoors and/or in wet ambient shall be mounted within NEMA 4 type waterproof enclosures, and shall be rated for operation at -40° to 158° F [-40° to 70° C].

G. Input/Output:

1. For flexibility in selection and replacement of valves, the controllers shall be capable of supporting all of the following valve control types 0-10VDC, 0-5VDC, 4-20mA, 24VAC floating point, 24VAC - 2 position (Normally Open or Normally Closed).

2. For flexibility in selection and replacement of sensors, the controllers shall be capable of reading sensor input ranges of 0 to10V, 0 to 20mA, pulse counts, and 200 to 20Kohm.

3. For flexibility in selection and replacement of binary devices, the controller shall support dry and wetted (24VAC) binary inputs.

4. For flexibility in selection and replacement devices, the controller's shall have binary output which are able to drive at least 12VA each.

5. For flexibility in selection and replacement of motors, the controller shall be capable of outputting 24VAC (binary output), DC voltage (0 to 10VDC minimum range) and PWM (in the 80 to 100 Hz range).

6. For future needs, any I/O that is unused by functionality of equipment control shall be available to be used by custom program on the controller and by another controller on the network.

7. For future expansion and flexibility, the controller shall have either on board or through expansion, 20 hardware input/output points. Expansion points must communicate with the controller via an internal communications bus. Expansion points must be capable of being mounted up to 650ft. (200 m) from the controller. Expansion points that require the BACnet network for communication with the controller are not allowed.

H. Serviceability – The controller shall provide the following in order to improve serviceability of the controller.

1. Diagnostic LEDs shall indicate correct operation or failures/faults for all of the following: power, sensors, BACnet communications, and I/O communications bus.

2. All binary output shall have LED's indicating the output state.

- 3. All wiring connectors shall removable without the use of a tool.
- 4. Software service tool connection through the following methods: direct cable connection to the controller, connection through another controller on BACnet link.

5. For safety purposes, the controller shall be capable of being powered by a portable computer for the purposes of configuration, programming, and testing programs so that this work can be accomplished with the power off to the equipment.

- 6. Capabilities to temporarily override of BACnet point values with built-in time expiration in the controller.
- 7. BACnet MAC Address shall be set using decimal (0-9) based rotary switches.

a. Configuration change shall not be made in a programming environment, but rather by a configuration page utilizing dropdown list, check boxes, and numeric boxes.

- 8. For ease of troubleshooting, the Controller shall support BACnet data trend logging.
- a. With a minimum of 20,000 trending points total on controller
- b. Trends shall be capable of being collected at a minimum sample rate of once every second.
- c. Shall be capable of trending all BACnet points used by controller
- d. Trends shall be capable of being scheduled or triggered

I. Software Retention: All Zone Controller operating parameters, setpoints, BIOS, and sequence of operation code must be stored in non-volatile memory in order to maintain such information for months without power.

- J. Application controller shall have meet the Agency Compliance:
- 1. UL916 PAZX, Open Energy Management Equipment
- 4. BACnet Testing Laboratory (BTL) listed as BACnet Application Specific Controller (B-ASC)

2. UL94-5V, Flammability 3. FCC Part 15, Subpart B, Class B Limit

System Point Description		Point									Alarm						
	GRAPHIC	ANALOG HARDWARE INPUT (AI)	BINARY HARDWARE INPUT (BI)	ANALOG HARDWARE OUTPUT (AO)	BINARY HARDWARE OUTPUT (BO)	SOFTWARE POINT (SFT)	HARDWARE INTERLOCK (HDW)	WIRELESS (WLS)	NETWORK (NET)	HIGH ANALOG LIMIT	LOW ANALOG LIMIT	BINARY	LATCH DIAGNOSTIC	SENSOR FAIL	COMMUNICATION FAIL		
CONDENSATE OVERFLOW	X		X					-	_	<u> </u>	_	X	X				
DETECTION LOCAL																	
DISCHARGE AIR TEMPERATURE	X	Х								X	Х			Х			
DAT ENTERING WATER TEMPERATURE	x	x								x	x			x			
LOCAL																	
EWT HEAT / COOL VALVE	x			x							-						
H/C VLV																	
	X		X									X	Х				
MIXED AIR DAMPER COMMAND MAD	X			Х													
OUTDOOR AIR TEMPERATURE (COMMUNICATED)	X								X								
SPACE HUMIDITY SENSOR LOCAL SPH	X	Х								Х				Х			
SPACE TEMPERATURE LOCAL	X	Х								X	Х			Х			
SPACE TEMPERATURE SETPOINT	X	x															
SUPPLY FAN SPEED	x			x													
SAF																	
SUPPLY FAN START/STOP SAF					X												
SUPPLY FAN STATUS LOCAL SAF	X		×														
BAS COMMUNICATION STATE						X									Х		
ECONOMIZER MINIMUM POSITION SETPOINT						X											
ECON MIN POS FILTER TIMER HOURS						X						Х	Х				
	+					x						Х					
OCCUPIED BYPASS TIMER OCC TMR						^											
OCCUPIED COOLING SETPOINT	X					X											
OCCUPIED HEATING SETPOINT	x					x											
OCC HT SP OCCUPANCY STATUS			-	-		x	-		-	-	-						
OCC STS SPACE TEMPERATURE SETPOINT	X					X											
ACTIVE SPT SP ACT				ĺ													
UNOCCUPIED COOLING SETPOINT	X					X											
UNOCC CL SP UNOCCUPIED HEATING SETPOINT UNOCC HT SP	x		$\left \right $		$\left \right $	x											

UNOCC HT SP

